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Abstract. Theoretical solutions have been derived for the galvanomagnetic transport prop- 
erties of double- and multiple-layer continuous metallic thin films. Interface scattering as 
well as external surface scattering of conduction electrons have been taken into account 
when solving for the electron distribution function in the presence of a transverse magnetic 
field. The electrical conductivities and the Hall coefficients of thin films are also given. 

1. Introduction 

The galvanomagnetic transport properties of metallic thin films have been studied both 
theoretically and experimentally [l-91 with great interest. The first analysis of the 
conductivity of metallic thin films in the presence of transverse magnetic field was done 
by Sondheimer [ 11, who extended Fuchs’ theory of thin-film electrical conductivity 
[lo,  111 to the existence of a transverse magnetic field. Later Sondheimer’s theory was 
applied extensively to studies of single-layer thin films, and some other approaches 
have been proposed [7-91. In recent years, new thin-film growth technologies such as 
sputtering and molecular beam epitaxy have been used to develop new types of thin film 
such as double- and multiple-layer films, which in turn have attracted attention to their 
interesting behaviours [12-201. When two metallic crystals grow on top of each other, 
the overall physical properties carry part of the coherence or incoherence between the 
two. The physical mechanisms of metal-metal interface structures and their properties 
have been studied theoretically [21-251, and primary results reveal that electron density 
appearsto have somewhat special states at the interface like that of the surfaces. To give 
an exact solution to the electron-interface scattering process is very difficult, however. 
In practical situations, the interface roughness, just as its counterpart at the external 
surface, involves many hard-to-control elements, making exact modelling extremely 
difficult. The use of average scattering parameters over the entire film for interfaces (and 
for external surfaces) becomes not only necessary and useful in understanding the 
interface-related physics, but also provides the first realistic approach to the problem. 
These types of scattering parameters, first introduced by Fuchs in 1938 [lo], have been 
used extensively in research into thin film transport phenomena in both theory and 
experiment, and have been quite successful over the years. As for metallic double- and 
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Figure 1. A schematic illustration of the double-layer thin films 
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Figure 2. Illustration of coordinate system. 

multiple-layer films, several theories have been proposed [12-15,18-201 to interpret the 
electrical conductivities in the absence of magnetic field. 

In this paper we shall derive general solutions for the Boltzmann transport equation 
of conduction electrons for double- and multiple-layer metallic thin films in the presence 
of a transverse magnetic field. The results are presented in terms of surface and interface 
scattering parameters. Finally we give the solutions to the electrical conductivity and the 
Hall coefficient. 

2. Double-layer thin films 

2.1. Electron distribution functions 

Consider a double-layer thin film with layer thicknesses d l  and d 2  respectively, as shown 
in figure 1. The surface reflection coefficientspl andp, represent the amount of electrons 
that are specularly reflected by the surfaces. The interface contributions to the transport 
phenomena are represented by the transmission coefficients tl and t2, which stand for 
the specularly transmitted part of the electrons, and the reflection coefficients r1 and r,, 
which stand for the specularly reflected part of the electrons. The film is placed in an x- 
y plane and the magnetic field is along the z axis, as shown in figure 2. We assume that 
the bulk values of the electrical conductivities u1 and U,, and the mean free paths A and 
A, are known, or can be determined otherwise. We also assume that the diffusion 
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scattered electrons have the same possibilities of going in any direction, i.e., 4n solid 
angle in the case of interfaces and 2n in the case of surfaces. 

The electron distribution function can be written as 

f ( U ,  z> = fo + fi,2(U, 2) (1) 
where fo  is the Fermi distribution function, and fl(u, z )  and f2(u, z )  are the deviations 
from f o  in metals 1 and 2, respectively. The Boltzmann transport equation has the form 

Applying Sondheimer’s method, we define 

fl = (UXCI1 + UyCI2) a f o l a v  
f2 = (uxc21 + uyc22) a f o l a u  
g1 = c11 - iCl2 

g2 = c21 - ic22 
and 

E* = E x  - iE,. 

Now we have a new form of equation (2): * g12 eB e 
+i-gl,2 =-E* + -A 

az t 1 , 2 U ,  mu, mvu, 

This can be further reduced to 

e 
+A-- - E* * g12 

az T T , ~ U ,  mvv, 

where 

t t 2  = 1 / w 1 , 2  + i 4  
and 

a = eB/m. 

The general solutions to (9) are 

The boundary conditions can be derived as 
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g; ( 0 2 ,  z = 4 )  = p2g: (-U,, 2 = d2). (19) 

Combining (12)-(15) with (16)-(19), we obtain a set of four linear equations for F. The 
exact solutions are complicated and are given in the Appendix; here we only give 
solutions under the approximation of small r and t ,  which represent relatively rough 
interfaces. 

F: = -1 + p l  -p l  exp(-d,/z,v,) (20) 

(21) F; = -1 + r l  + t 2 ( t 2 / t 1 )  - y1 exp( -d l /~1v2)  - t 2 ( ~ 2 / ~ 1 )  exp(-ddzzu,) 

F,+ = -1 + r2 + ti(zi/z,) - ~2 e x p ( - d 2 / ~ 2 ~ , )  - t 1 ( ~ 1 / ~ 2 )  ex~(-d i /z iuz)  (22) 

(23) F; = -1 + p 2  - p 2  exp(d2/t2v,). 

Substituting (20)-(23) into (12)-( 15), we obtain all final results of conduction electron 
distribution functions for double-layer thin films with transverse magnetic field present. 

2.2. Conductivity and the Hall coejjficient 

The electrical current densities inside metal 1 are 

J1,  = -2e(m3/h3) / / /cl lui(8f/dv)du, du, dv, 

We can write the same expressions for metal 2. Define 

then 

JT,2 = -2m(m3/h3) /z  d e  Iffi g1,,v4 sin3 0(afo/au) du. (27) 
0 0 

Substituting the solutions for g1,2 into (27), we obtain the results for electrical current 
densities 
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J; = -------E* 4ne2m2 lom d u  Ilm d t  v3  afa zi (f - f) 
h3 

The electrical conductivity is defined as 

(31,2 = R e T 2 )  1 Im(J;,z)=o 

and the Hall coefficient is defined as 

The electron distribution functions depend upon z .  To deduce some experimentally 
measurable quantities, we have to average over the entire thin film. The actual average 
is done for each individual layer , and the film average can be easily carried out thereafter. 
The results are 

crl = o:(l - (3/1,/4d,) Jm dt ( l / t3  - l/ts)(F: + F;)[exp(-dlt/kl) - 11) (32) 
1 

1 

Figure 3 shows the calculated electrical conductivity calculations for metal 1. The 
assumed thin film has metal layers of equal thickness with various interface parameters. 
From top to bottom both r and t decrease, i.e., the interface roughness increases. Figure 
4 shows the corresponding Hall coefficients under the same assumptions as figure 3. We 
notice first that when layers become very thick, both electrical conductivities and Hall 
coefficients approach their bulk values, as they must do for the results to make sense. In 
general the results agree with those for single-layer thin films [2,8]; the main difference 
is the coupling effect between the two metals, as revealed in equations (21) and (22). 

3. Multiple-layer thin films 

3.1. Electron distribution function 

Due to their strong structural coherence across each individual layer , metallic multiple- 
layer thin films such as superlattices are systems with enhanced interface effects. Exper- 
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Figure 3. u l / 4  versus layer thickness. A I  = 50 A, 
A 2  = 150A,pl = 0 . 1 , ~ ~  = 0.2;(A)r1 = t l  = 0.25, 
rz = tz  = 0.35; (B) r l  = t l  = 0.2, r2 = t2  = 0.3; (C) 
r l  = tl = 0.15, r2 = tz  = 0.25; (D) rl = tl = 0.1, 
r2 = t2 = 0.2; (E) rl = r2  = 0.3, tl = tz  = 0. 

Figure 4. RHl/Ral versus layer thickness. A I  = 
50& L 2  = 150 A, pl = 0.1, p 2  = 0.2; (A) rl = 
rz = 0.3, tl = t2 = 0; (B) r l  = t l  = 0.1, r2 = tZ  = 
0.2; (C) r l  = t l  = 0.15, r2 = t2  = 0.25; (D) r l  = 
ti = 0 . 2 , ~ ~  = t2  = 0.3;(E)r1 = t l  = 0 . 2 5 , ~ ~  = t 2  = 

0.35. 
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Figure 5. Illustration of metallic multiple-layer thin film. 

imental and theoretical work has been done in many categories [16,17]. For a general 
metallic superlattice thin film, as shown in figure 5 ,  we make the following assumptions. 
First, the total number of individual layers is large enough to make the uppermost surface 
and the film-substrate interface effects negligible. This is a condition that can be easily 
fulfilled in experimental situations. Then we define t l ,  t 2 ,  r1 and r2 in the same way as we 
did for the double-layer thin films. The bulk material properties such as electrical 
conductivities, Hall coefficients, electron mean free paths, etc, are also assumed to be 
known. Finally, the film is in x-y plane and its dimensions in those two directions can be 
considered infinite in comparison with its thickness, and the magnetic field B is in the z 
direction. The derivation is very similar to the double-layer case, so we can eliminate 
some detail in the process. 

Following equations (1)-(9), the electron distribution functions for multiple-layer 
thin films are 

U ,  > 0 ,  (n  - 110 < z < (n  - 1)D + dl 



Transport properties of metallic thin films 3925 

e E " t ;  z - (n  - 1)D - d ,  11 (37) 
g; ( U ,  z )  = - [ 1 + F ;  ( U )  exp( - 

m u  zT U 2  

U ,  < 0 ,  (n  - 1)D < z < ( n  - 1)D + dl 

eE*z,* z - (n  - 1)D - d l  11 (38) 
g:(u,  z )  = -[ 1 + F:(v) exp(- 

m u  z2* v z  
U ,  > 0 ,  (n  - l )D  + dl  < z < nD 

eE*z,* z - n D  
g;(u,  z )  = -[ 1 + F;(u) exp(----)I 

m u  zz* u z  (39) 
U ,  < 0 ,  (n  - 1)D + dl  < z < nD. 

The boundary conditions are 

g: [u , ,  z = (n - l )D] = r l g ; [ - u z ,  z = (n - 1)D] + t2g:[uz,  z = (n  - 1)D] (40) 
g ; [ u z ,  z = (n - 1)D + d,]  = rlg:[-u, ,  I = (n  - 1)D + d , ]  

+ t2g; [ U , ,  z = (n  - 1)D + d,] 

g : [ u , , z  = (n  - 1)D + d2]  = r 2 g ; [ - u , ,  z = (n  - 1)D + d,] 

+ t lg:[u, ,  z = (n  - l ) D  + d , ]  

g ; [u , ,  z = nD] = r 2 g t [ - u r ,  z = nD] + t l g ; [ v z ,  z = n o ] .  

(42) 

(43) 
Substituting (36)-(39) into (40)-(43) we obtain another set of four linear equations. For 
the same reason as for the double-layer thin films, we only present solutions of F in  the 
simplified situation: interface parameters are small. The complete solutions are given in 
the Appendix. 

8': = F; = -1 + r1 + t 2 ( t 2 / r 1 )  - r1 exp[-(d,/z: U , ) ]  

- t 2 ( r 2 / z J  exp[-(d,/G u2) l  

- t l (Z l /Z2)  exp[-(d,/G u z > l .  

F; = F; = -1 + r2  + t l ( z l / t 2 )  - r2 exp[-(d2/tt  U , ) ]  

3.2. Conductivity and the Hall coefficient 

Following equations (24)-(27), we have current densities 

J T  = --E* 4ne2m2 lom du llm d t  u 3  dy v o  zT (l /? - l / t 4 )  
h 3  

t ) / 2  
z - (n - l ) D  

x [ l + ~ ; e x p ( -  z; U 

t ) / 2 1  z - (n  - 1)D - dl  
r ;  U 

+ F; exp( - 

(44) 

(45) 

J ;  = --E* 4ne2m2 d u  llffi d t  u 3  ; afo t; ( l / t 2  - l / t 4 )  
h 3  
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Figure 4. U,/.: versus layer rhicknes. From top to bottom: (A) AI = 50 A, Az = 400 A, rl = 
t , = 0 . 2 ,  r 2 = t Z = 0 . 3 ;  (B) A1=50A,  h2=400A, r l = t , = O . l ,  r 2 = t z = 0 . 2 ;  ( C )  
A ,  = loOK, Az = 400A, r l  = t l  = 0.2, r2 = r 2  = 0.3; (D) AI = IOOA, A 2  = 400& rl  = t l  = 
0,1,r2 = tZ  = 0.2;(E)uz/d:versuslayerthickness,A1 = 50A,A2 = 4 0 0 A , r 1  = t1 = 0.2,r2 = 
t2 = 0.3. 

d 4  (A-! 
Figure 7. R14,/R!ll versus layer thickness. (A) J., = lOOA, = 400A. r l  = f1 = 0.1, rz = 
t 2 =  0.2;(B)JVl = 100A,A2= 400A,r1 = f I  = 0 . 2 , r z = t 2 = 0 . 3 ; ( C ) A 1  = 50A,A2=40O8,, 
ri  = t ,  = 0.1. r2  = r z  = 0.2; (D) lLl = 50 A, Az = 400 A, rl  = t l  = 0.2. rz = t 2  = 0.3; (E) 
R,,/RYIz versus layer thickness, A I  = 50 A,  I,* = 400 A,  r l  = f 1  = 0.2. rz = t2 = 0.3. 

z - (n  - 1)D - dl  
z; U 

The expressions for electrical conductivities and Hall coefficients are the same as for 
double-layer films, i.e., (32)-(35). Numerical calculations of conductivity are shown in 
figure 6. Hall coefficient calculations are shown in figure 7. The assumed multiple-layer 
film consists of metal layers of equal thickness. The results are plotted against the 
reciprocal of the layer thickness to accommodate some experimental work [17]. In both 
figures curves A-D are for metal 1, and curve E is for metal 2. Again we notice that 
when the layers become very thick, both the conductivity and the Hall coefficient 
approach bulk values. The interesting feature is that under certain conditions, the 
conductivity and Hall coefficient for one metal have peak values. The position of the 
peak is quite sensitive to changes in structural parameters, as can be seen from curves 
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A, B and C in figure 6. Finally, curve D shows only the normal thin film size effect [2,8]. 
We only plotted one curve for metal 2 due to the fact that its variation, under the assumed 
conditions, is relatively small in terms of structural parameters, contrary to that of metal 
1. While metal 1 experiences considerable changes, metal 2 under the calculation 
conditions demonstrates the normal thin film behaviour [2,8]. 

The appearance of peak values for metal 1 is apparently introduced by the enhanced 
coupling between the two metals. Unfortunately it is very difficult to predict theoretically 
the exact positions of the peaks, mainly due to the complexity of equations (32)-(35). 
However, from the results we can offer some possible explanations. First we notice that 
ill is smaller than A 2 ,  which means that the interface coupling (i.e., electron scattering) 
causes metal 1 to have part of its conduction electrons to hold longer mean free path A2.  
Consequently the conductivity increases. But the total number of such electrons should 
be independent of the layer thickness since it is only the function of interface structure 
parameters and the size of the interface area. Therefore the ratio of electrons which hold 
A 2  to the normal ones gets smaller when the layer becomes thicker, resulting in a lower 
contribution to conductivity. On the other hand, when the layer is too thin, most of the 
mean free paths of both types of electrons are seriously restricted by the geometry, 
causing the conductivity to decrease. Combining the two effects, we would expect a peak 
conductivity value at a certain layer thickness. From the discussion we can also see why 
metal 2 does not have peaks under the same assumed parameters. The second effect is 
that if we have better interface structure (larger values of r and t ) ,  the portion of electrons 
holding A 2  within metal 1 will increase, resulting in stronger peak conductivity values. 
The same explanation can also be applied to the Hall coefficient. 

4. Conclusions 

We have presented solutions of the conduction electron distribution functions for dou- 
ble- and multiple-layer metallic thin films in the presence of a transverse magnetic field. 
From there we have derived the electrical conductivities and Hall coefficients. The 
results may give us some directional guidance in applying different combinations of 
metals and in controlling the structure of the system to achieve certain types of artificial 
material. The study of galvanomagnetic transport phenomena of those thin films will 
offer, in addition to other transport properties, another physical aspect of metal-metal 
interfaces. Further investigations, especially experimental ones, are very much needed 
for this particular problem. 

Appendix 
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